"Futures" of Space Technology "Frontiers of The Responsibly Imaginable"

Dennis M. Bushnell
Chief Scientist
NASA Langley Research Center

including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		
1. REPORT DATE 01 DEC 2006		2. REPORT TYPE N/A		3. DATES COVERED -			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Futures of Space T	Imaginable 5b. GRANT NUMBER						
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center Hampton, VA 23681 USA					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM2024							
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	48	ALSFONSIBLE PERSON		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Space Technology Issues/Metrics

- Bandwidth
- Resolution/Aperture
- Propulsion
- Power/Energy Storage
- Space Access
- Radiation Protection
- Size/Weight

- Sensitivity
- Machine Intelligence
- Affordability
- New/Different "Observables"
- 'Protection'
- Reliability

THE KEY TECHNOLOGIES

(highly synergistic / at the frontiers of the small / in a "feeding frenzy" off each other)

- <u>IT</u> (comms/computing/sensors/electronics/machine intelligence)
- Bio (genomics/molecular biology/designer life forms)
- Nano (coatings/barriers/computers/sensors/materials/ "assemblers")
- <u>Energetics</u> (HEDM (various)/revol. solar/biomass/explosives/propellants/storage)
- Quantum [crypto/computing/sensors/optics/Electronics]

Ongoing Space Technology "Revolutions"

- Micro/Nano Sats
 - Far lower launch costs [value/lb vs. \$/lb]
 - Far greater launch "flexibility/ubiquity"
 - Toward "Everymans" Capability" [\$45K fab and ride Utah Co., Tokyo Univ.]
 - Co-operative Conops/'Formation Flying' for Aperture [Multitudinous enabling approaches/technologies]

Ongoing Revolutions [Cont.]

- Nano Sensors, Orders of Magnitude Improvements in: sensitivity, bandwidth, size [red.], Cost [red.] i.e. E-6 degree IR sensit.
- Energetics:
- Thermal Diodes [20%-30% Direct Conversion]
- Zeolite H2/Methanol Storage [Ionomers]
- CNT Flywheels, MIT MEMS Rockets
- LENR's, SMES/CNT Magnets
- HEDM [Various]
- Tethers, Room Temp. S-C

Ongoing Revolutions [Cont.]

- Materials:
- SWCNT/NNT
- Gossamer Membranes Etc./"Light Buckets"
- In-space e-beam based free form fab
- Syntactic foams, Str. Amorphous metals, microstructured materials, brilliant materials
- Computing /Comms.
 - Optical Comms in-the-large
 - Bio/optical/Quantum/CNT/Molecular Computing

Potential CNT Applications

- Overall [structural/radiator] weight reductions order of 3 to 8
- Flywheels
- Mag. Sail
- [Better] Tethers
- Ultra Capacitor
- Sensors/Computing/Electronics 2-4 orders of magnitude improvements...
- High/Room Temperature S-C
- Extreme multi-functionality

Carbon Nano-Tubes......

- A "One-Stop Shopping Brilliant Material"?
 - Nascent/Coincident Sensing,Petaflop LOW ENERGY Computing,EM Actuation,[H2,E-M] Energy Storage,Huge strength-to-weight,Anti-Radar?

Membrane Structures

- Lightweight/Deployable/Inflatable/Rigidi zable [Including Struts/Trusses]
- 100M to 1000M Apertures [eventually]
- Multitudinous Applications ["sails", antennas, "light buckets", solar arrays, planet/life finders", concentrators, mirrors, lenses, radiators, sunshades....]
- Distributed actuation/power/processing/sensing

Ongoing Revolutions [Concluded]

- Misc.
 - Nano optics [1/100th size/weight/cost]
 - Nanobots
 - Machine Intelligence
 - Insitu robotic repair/refueling
 - "Revolutionary Rocket"

AI (AND BEYOND) COMPUTING

Human Brain Characteristics/Capabilities

- 100 billion neurons
- 100 trillion connections
- 200 calculations/second, (slow) speed of neural circuitry
- 20 million billion calculations/second
- Excellent at (parallel-computing) pattern recognition, "poor" at sequential thinking
- Operates via "random tries"

Machine Capabilities

- Currently,200,000 billion calculations/second
- By 2012, 20 million billion is available (by 2025, on a PC)
- By 2030, PC has collective computing power of a town full of human minds

Machine Intelligence

- Approaches:
 - Experiential Behavior Based/'learning''(neural nets/other "Soft Computing")
 - Nano-section/replicate brain in Silicon
 - "Emergence"
- Should produce Artificial/Cyber "life" which will possibly-to-probably be sentient but will not be anthropomorphic

"Beyond" NANO - Quantum Synopsis - Quantum Technology

- Largely enabled by/synergistic with NANO and Femtosecond Lasers
- Tailoring/Utilization of (mainly two-state) "Quantum States" electron or nuclear spin/energy level, Photon polarization/spin, Super conduction charge number/phase (Qubits Quantum bits)
- Especial Technological interest in Revolutionary capabilities derived from Quantum Entanglement (Produces/exhibits non-classical, non-intuitive, NON-LOCAL behavior).
- Entanglement defined as highly correlated Quantum states. If entangled material is separated spatially a change in one portion INSTANTANEOUSLY changes the other portion irrespective of distance.

Quantum Technology Arenas

- Zero Point Energy
- Cryptography keyes
- Materials (nano at the quantum limit, magnetics)
- Sensors (including Quantum well Infrared detectors)
- Computing (Progressing very rapidly, petaflops and beyond)
- Imaging ("interaction free," Quantum holography,)
- Information Systems
- Communications (Instantaneous irrespective of distance, usefulness TBD)
- Optical Systems (e.g. Quantum Interferometry)
- "Electronics"

Quantum Effects in the Macro/Classical World

- Lasers
- Bose-Einstein Condensate
- Super-Fluidity
- Super-Conductivity
- Quantum Entanglement
- Fermionic Condensate
- Quantum Magnetic Deflagration

ACCESS TO SPACE THE (USUAL) DESIGN OPTIONS

- Rockets (various)
- Airbreathing (various)
- Staging (single, two, three, etc.)
- Reusable/expendable
- Horizontal/vertical T/O and landing
- Fuels (various)
- Manned/unmanned
- Materials (various)
- Controls (various)

Thus far--no clear "winning combinations" for either affordability or flexibility metrics, are agonizing along evolutionary development paths, worldwide

Revolutionary Rocket Technologies

- Propulsion Cycle:
- a) PDWR order[s] of magnitude reduction in turbine feed pump pressure [huge cost /reliability payoff], Deton. In Liquid Fuel
- b) Base Region Augmentor "poor man's Airbreather', use hypermixing to entrain external air, triples thrust/doubles payload
- Fuels HEDM [e.g.Cubanes/N4,atomic C/H...],Isomers,Anti-matter,H-B-11 Fusion
- Materials SWCNT,NNT,Micro-structured Materials,Amorphous metals,free-form Fabrication

Revolutionary rocket Technologies - Continued

- "Designer Aero' "Flow Control", obviate "Ballast/packaging problems" & obviate shock Drag [forward liquid injection]
- Launch Assist:
- a) Beamed MW's from ground to Rectennas on side of bird, Energy powers base region MHD Accelerator, enables 2500 Sec. Of Isp
- b) Polymer-stabilized/laser guided high Pressure Water Jets
- c) Tidmans "Slingatron"
- d) Tethers

An Approach to Orders of Magnitude Reductions in Weight/Cost of Exploration "Upmass" to LEO

- Collect/Pressurize in-space "Propellant Mass" [not fuel] from "upper Atmosphere", re-use collected disassociation energy
- Utilize an in-orbit "Beamer" [space infrastructure/utility], transfer collected energy to the vehicle [MW's/Rectennas,Lasers/PV]
- High Thrust/High g acceleration in near[er] field of the beamer out of the Gravity well using MHD accelerator with Isp ~ 2000 seconds

Possible MHD Synergisms

- MHD Accelerator:
 - In-space Propul. via Beamers
 - "Launch Assist" via Ground-basedBeamers
 - MHD Generator:
 - Regenerative Aerobraking

[Sampling of] HEDM Candidates

- SBER
- Metallic H2
- Solid H2 with Atomic C/B/H
- Cubanes/N4
- Metastable He
- Positrons/Anti-matter
- Quantum Nucleonics [Isomers]
- H/B-11 Fusion

Aneutronic H-B11 Fusion

Inertial Electrostatic Confinement Fusion [QED,IEC,IEF]

- Produces Protons, Direct MHD Electricity Generation vice [Neutron] Thermalization
- Reduced Radiation Hazard[s]/Weight
- High Thrust-to-weight AND High Isp [via reduced shielding,magnetics,High Power Drivers]
- For SSTO, Payload Mass Fraction is ~ 14%, Launch Cost Estimate ~ \$100/lb

Nominal Power Densities

• ZPE	E108 X Chemical
•Anti-Matter/Positrons	E10 X Chemical
• Fission/Fusion	E6 X Chemical
• Isomers	E5 X Chemical
• SBER	E2 X Chemical
• Hydrogen	38 KWH/Kg
• HC	14
 Advanced Flywheels 	9 - 20? "
• Batteries	04 - 10? "
• SMES	
• Super/ultra Capacitors	

Energetics "Wild Cards" Being Worked

- Solitons for Divergence Free Power Beaming
- Positron Storage as Positronium
- High Efficiency Plastic Nano PV
- 30%+ Thermo-Electrics
- High Efficiency [KW/KG] Fuel Cells
- "On-Site" H2 Generation vice Storage [Zinc,....]
- Room Temperature S-C
- Tapping ZPE
- Controlled Nuclear Isomer Release
- SMES with CNT Magnets
- Lithium Tantalate Crystals

Soliton Energy Transfer.....

- Solitons are waves in non-linear systems which are non-dispersive,"maintain amplitude"
- Utilized in optical communications [information transfer],up to 1,000,000 Km thus far
- Physics evidently allows utilization for Energy Transfer, Not yet accomplished
 - Would change Energetics MUCH [DE weaponry, SPSats, Beamed Energy Propulsion,.....]

"Sensors are poised on the Brink of a Revolution Similar to that experienced in Micro-Computers in the 1980's"

Jon Wilson,2004 Editor-in-Chief,Sensor Technology Handbook

Sensor Trends

- Mini-to-Micro-to-Nano
- Hyper-Spectral
- Multi-physics
- Hyper-Sensitive
- Hyper-Resolution
- Integrated with Actuators, Process ors, Comms
- Sensor Webs/Swarms/"Net -works"

- Lower Power, Energy "Harvesting"
- Brilliant
- Ubiquitous
- Data Fusion/Sense-Making
- "Wireless"
- Apertures from Coop conops ,Membranes
- Active and passive

[Sample] Emerging Sensor Technology areas

- Terrahertz
- Biomimetics, Bio [living] sensors
- Protein Engineering
- Femto-second Lasers
- CNT's [bio,chem]
- GPS as active sensor "Source"
- Infrasound
- Atmospheric static E Field
- Cadmium-Zinc-Telluride Gamma Ray Sensors

The Sensor Capability Spiral

- MEMS Technology enables ever smaller Sensors/Instruments which
- Reduces requisite energy/power and
- Improves sensor response and
- Increases sensitivity and also
- Reduces cost[s] thereby enabling
- Huge increases in sensor ubiquity/Networks [10,000....] and Resolution

And Then There is NANO.....

Sample Nano-Sensor Frontier

- Nano/RFID tags [w/138 digits ID every molecule on Planet,Japanese Children, Mexican Police & Hospitals/Walmart/ETC....]
- Smart dust[comms/sensors/PV mm]
- Quantum entanglement-based sensor enhancements
- 10⁻⁶ F IR focal plane arrays (nanocantilevers)
- Single molecule detection, detection of single molecules
- F-sec laser induced signatures
- Atom optics/Matter wave sensors [E4-to-E6 improvements,esp. gyro/inertia Sensors]
- Nav via pulsing cosmic X-ray sources

Sample Characteristics of Emerging Global Sensor Grid

- Military, Commercial/Industrial, Public Safety, Scientific, Populace Contributions/Observations
- Ever-Improving Sensitivity, Resolution, Ubiquity, Connectivity, Fusion/'Sense-Making', Physical Phenomena "Coverage"
- Land, Sea, Air, Space, "Internal"/External

Capabilities Enabled by the On-Going Tech. Revolutions

- GEO+ "Long Dwell" systems,<1m
- Miniaturized, affordable, ultrasensitive, ub iquitous, lightweight, Brilliant, low power Req., ultraspectral, multiphysics, long-lived Multi-purpose/Reconfig. in-space "assets"
- Rapid/inexpensive reconstitution
- Huge Apertures [sparse arrays,membranes]
- Requisite Band widths

Femto/ATTO-Second Lasers

- Order E-15 Pulse Length, a "scalpel"
- Improved Atmospheric Propogation (< breakdown time), "Pre-Plasma Channeling"/en-route amplification
- Can "cut through anything," 100 Terrawatt to Petawatts per pulse
- Wholly new/different material Interactions/Kill Mechanisms, no "protective plasma layer" formation, Huge localized electrical/magnetic fields (>atomic forces)
- Can be small/inexpensive

Femto/ATTO-Second Lasers Applications

- Sensing
- Laser and (from "secondaries") gamma/x-ray (effective defense against hordes/swarms)
- Fission ignition (accomplished)
- Enables new neutron, positron, x-ray and gamma ray sources
- Fusion ignition/thermonuclear
- Broaching, "make safe"
- Comms
- Beamed propulsion
- Materials processing and "machining"
- Medical applications

Defense Against Air/Space Borne Swarms via Femto-Second Lasers

- Continuous/cued surveillance of Environs via f-second lasers to find/illuminate/induce "fluoresence" of swarm elements
- Attrition via f-second laser slewing/ kill mechanisms/X-rays, improved atmospheric propagation and amplification from "channeling" CW laser

NOTE: The anticipated reduced thermal/other inertia of swarm components compared to 20th Century munitions facilitates "take down/out" via f-second lasers.

Sampling of "Interesting" Technology Capabilities

- Factor of 5-to-8 Dry Wt. Red.- CNT's
- E8 more in computing-nano/molec/quantum
- Tb+ Bandwidth optical
- 30%+ direct Conversion Thermal to Elec.
- 50%+ PV
- Storable Positrons E9 Xchem.
- Gamma Ray Lasers Positrons
- SMES at 3Xchem CNT Magnets
- H-B11 Fusion aneutronic/safe
- Miniaturized, ultra-sensitive, ubiquitous, low power, multi-physics Sensors

Tech. Sampling [Continued]

- Non-Cryo H2 Storage Casimir Force designs
- Electron beam free form fabrication, Here & "There"
- Tethers for energy harvesting
- 300M to 1km + brilliant Membranes

Resulting Space System[s]

- Swarms of Miniaturized Payloads, resulting ubiquitous & inexpensive space access
- Huge apertures via smart membranes and Co-op conops "Staring"
- Wonderous instrument etc. sensitivity, resolution, bandwidth
- Nav via Atom-optics, Pulsing cosmic X-Ray sources, optical GPS
- In-Space Beamers, Propulsion/orbit-raising and Ground/air/space Attack
- In-space fab/repair
- Monitoring of nano/RF tags, personal/onperson Electronics, wake vortices

In-Space Infrastructures?

- Fuel Depots, Tethers
- In-Situ Free Form fab & Repair/Service
- In-Space Beamers:
- Lasers [50% solid state/FEL],MW 50+% Monochromatic PV,Revolutionary Rectennas,concentrators/lenses
- "Fueled", PV, Isomer or Nuc [various e.g. vortex], E-M Tethers
- Beamed energy for orbit raising, Maneuvering [Isp = 2500 /MHD, sails], Asteroid defense, space debris
- Atmospheric "dips" for "fuel"? [aerobrake maneuv.]
- Highly Vulnerable
- "Dual Use" [Civilian, Commercial, Space ops/Antispace/Ground Attack...]

Satellite Outlook[s]

- [Continued] Extreme size Reductions via IT,Micro/Nano,Energetics Technology Revolutions
- Wonderous AFFORDABLE Enhanced Functionality across-the-board
- Aperture via Co-operative Con-ops or Membranes

Leading to/providing:

- "Everymans" Space capability [\$50K fab & Launch, value/lb vice \$/lb]
- Global Sensor Grid [Scientific/Commercial/Military]

Launch Vehicle Outlook[s]

- Reduced size/Multiple Payloads
- Automatic/autonomous ops [Reduced "standing Army Costs,IVHM]
- Reduced cost/Ruggedized "Conventional Rockets"
- Revolutionary Rockets [PDWR,Ejector,Beamed MWs/MHD,HEDM/Adv. Fuels,CNT Materials..]
- Micro/MEMS Rockets

Ongoing Changes/Options in Space Utilization & Economics

- From IT/Bio/Nano Payloads which are much Smaller/Lighter/Smarter/Cheaper
- Results in increasing "Value per pound" and less pounds /costs for space access
- Decreasing rational for "Humans in Space" (Robotics MUCH "better/cheaper/faster")
- Revol. Rocket & "Mass Launch" Options
- Reusable In-Space Infrastructures (Fuel Depots, "Beamers," Insitu free form fab.)

And Then There Is "Near Space"

- Nominally 75k ft to 325k ft
- FAR Cheaper, "Faster" [development/deployment] and "Better" [e.g. Resolution, Persistance] than [TAC] "Space"
- Buoyant Lift Problematical above ~ 90 k ft
- Fixed Wing[s] "work", KEY IS ENERGETICS/PROPULSION
 - Currently PV/Fuel Cells/Elec. Motors
 - Future options include Positrons, SMES/CNT Magnetics, Soliton Energy Beaming, X10 improved Fuel Cells and X3 improved PV

Space Tech "Futures" Bottom Lines

- The ongoing IT/Nano/Energetics Tech Revolutions will Revolutionize SPACE Technology in terms of Capabilities/Size/Cost/Flexibility/Ubiquity
- There is an "Embarrassment of Riches" in terms of "Tech. Opportunities/options" with more added almost daily,needs to be Continuously Triaged investigate 20 to get 2 or 3 really good ones [wide ranging metrics]
- World-Wide Technology/Capabilities

UNCLASSIFIED/UNLIMITED

"Futures" of Space Technology – "Frontiers of the *Responsibly Imaginable*"

Dennis M. Bushnell

Chief Scientist NASA Langley Research Center Hampton, VA 23681 USA

dennis.m.bushnell@nasa.gov

This paper was received as a PowerPoint presentation without supporting text.

Bushnell, D.M. (2006) "Futures" of Space Technology – "Frontiers of the *Responsibly Imaginable*". In *Emerging and Future Technologies for Space Based Operations Support to NATO Military Operations* (pp. KN-1 – KN-2). Meeting Proceedings RTO-MP-RTB-SPSM-001, Keynote. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp.

"Futures" of Space Technology – "Frontiers of the Responsibly Imaginable"

